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Abstract: This study investigates the algebraic reasoning processes of university students when ex-

panding mathematical expressions in the context of nonroutine problem-solving. The research adopts 

a qualitative approach to explore how students interpret algebraic structures, apply symbolic transfor-

mations, and construct logical explanations while working through unfamiliar tasks. Data were col-

lected through written tests, task-based interviews, and detailed analysis of students’ solution strategies. 

The findings reveal significant variation in students’ ability to generalize patterns, recognize structural 

relationships, and justify algebraic procedures. Students with strong conceptual understanding demon-

strated flexible reasoning, coherent explanations, and appropriate use of algebraic properties. In con-

trast, students who relied heavily on procedural rules often struggled with symbolic manipulation, pro-

duced fragmented reasoning, and exhibited misconceptions related to variables and distributive oper-

ations. These results highlight the importance of fostering conceptual understanding, metacognitive 

awareness, and reasoning-oriented instruction in university mathematics. The study provides insights 

for educators seeking to design learning environments that promote deeper algebraic thinking and 

enhance students’ ability to solve complex, nonroutine problems. 

Keywords: Algebraic Reasoning; Mathematical Expression Expansion; Nonroutine Problem-Solving; 

Qualitative Analysis; Symbolic Manipulation 

1. Introduction 

The development of algebraic reasoning has become a central focus in contemporary 
mathematics education, particularly as higher education institutions aim to cultivate students’ 
abilities to engage in advanced problem-solving and analytical thinking. Algebraic reasoning 
is not merely the manipulation of symbols; it represents a cognitive process that allows indi-
viduals to interpret, generalize, and transform mathematical relationships. In university set-
tings, this capacity becomes increasingly important, as students must work with complex 
mathematical ideas and apply them in various contexts. Consequently, understanding how 
students develop and use algebraic reasoning is essential for assessing the effectiveness of 
instructional approaches and identifying areas that require pedagogical improvement [1]. 

Nonroutine mathematical problems provide a meaningful platform for evaluating alge-
braic reasoning, as they require students to move beyond memorized procedures and employ 
deeper conceptual understanding. Unlike routine tasks that follow predictable patterns, non-
routine problems challenge students to analyze unfamiliar structures, construct strategies, and 
justify their reasoning. These tasks therefore serve as an effective lens for examining how 
students interpret expressions, make transformations, and engage in multi-step reasoning 
processes. By studying students’ performance on nonroutine problems, educators and re-
searchers can gain insight into the sophistication and flexibility of their algebraic thinking [2]. 

Although many university students have been exposed to algebra for years, research 
indicates that their ability to manipulate and interpret algebraic expressions meaningfully re-
mains limited. Students often rely heavily on procedural approaches without fully understand-
ing the underlying concepts. When faced with nonroutine problems, these surface-level strat-
egies frequently fail, revealing gaps in conceptual comprehension and reasoning fluency. Such 
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challenges suggest that traditional instructional methods may not sufficiently support the de-
velopment of algebraic reasoning, particularly in areas requiring abstraction and symbolic ma-
nipulation. 

In the context of higher education, the ability to expand or elaborate on algebraic ex-
pressions is critical for success in various mathematical domains, including calculus, linear 
algebra, and discrete mathematics [3]. Expression manipulation forms the basis for deriving 
formulas, solving equations, analyzing functions, and interpreting mathematical models. Yet, 
students’ errors in expansion and transformation often stem from deeper cognitive difficul-
ties, such as misunderstanding symbolic representations or failing to connect algebraic pro-
cedures with real mathematical meaning. These difficulties become even more pronounced 
when problems are embedded in unfamiliar or complex contexts [4]. 

The cognitive processes underlying algebraic reasoning involve several interconnected 
skills, such as recognizing patterns, constructing relationships, performing symbolic transfor-
mations, and validating solutions. When students engage with nonroutine tasks, these skills 
must work in concert, requiring them to think flexibly and adaptively. However, studies sug-
gest that many students struggle to coordinate these cognitive components effectively. By 
exploring how they approach such problems, researchers can better understand the nature of 
these difficulties and the reasoning patterns that emerge during problem solving. 

A qualitative approach offers valuable insights into the nuances of students’ algebraic 
reasoning, as it allows for the exploration of thought processes rather than simply evaluating 
correctness. Through interviews, think-aloud protocols, and analysis of written work, re-
searchers can uncover students’ strategies, misconceptions, and underlying conceptual frame-
works. This approach enables a deeper understanding of how students interpret symbolic 
expressions, navigate problem-solving pathways, and justify their choices when working 
through nonroutine mathematical challenges [5]. 

Existing literature highlights several common issues in students’ algebraic reasoning, 
such as overgeneralization of rules, misinterpretation of symbolic notation, and reliance on 
rote procedures. However, these findings are often derived from general assessments or rou-
tine tasks, leaving a gap in understanding how students reason in more demanding problem-
solving situations. There remains a need to investigate how students break down mathemati-
cal expressions, decide on appropriate transformations, and evaluate the coherence of their 
solutions under nonroutine conditions [6]. 

Furthermore, the increasing emphasis on higher-order thinking skills within university 
mathematics curricula underscores the importance of cultivating strong algebraic reasoning 
abilities. As the complexity of mathematical content rises, students must be able to engage in 
meaningful manipulation and interpretation of algebraic expressions. Understanding how 
they navigate these demands in the context of unfamiliar or complex problems can inform 
the design of instructional interventions that better support their learning needs. 

Given these considerations, examining university students’ algebraic reasoning in the 
context of nonroutine problem solving is both timely and necessary. Such studies can con-
tribute to the growing body of knowledge on mathematical cognition, provide insights into 
students’ conceptual understanding, and highlight the cognitive challenges that arise when 
students attempt to elaborate or expand algebraic expressions in novel situations. These in-
sights can, in turn, guide the development of teaching strategies that foster deeper, more 
flexible reasoning abilities. 

This study aims to analyze the processes through which university students engage in 
algebraic reasoning when elaborating mathematical expressions in nonroutine problems. By 
exploring their thought patterns, strategies, and conceptual challenges, the research seeks to 
provide a comprehensive understanding of the cognitive mechanisms underlying successful 
and unsuccessful reasoning. Ultimately, the findings are expected to support the enhancement 
of instructional practices that promote meaningful algebraic thinking at the university level. 

 
2. Literature review 
Algebraic Reasoning in Higher Education 

Algebraic reasoning has increasingly been acknowledged as a cornerstone of mathemat-
ical competence, especially in higher education where students encounter complex abstrac-
tions and formal symbolic systems. This form of reasoning enables learners to move beyond 
arithmetic thinking and engage with generalized mathematical ideas, patterns, and structures. 
As university curricula place greater emphasis on abstraction, students are expected to reason 
algebraically in ways that support deeper comprehension and advanced problem solving. The 
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ability to think relationally, recognize structures, and manipulate algebraic forms becomes 
essential for navigating the demands of higher-level mathematics [7]. 

Researchers commonly describe algebraic reasoning as a multifaceted cognitive process 
that integrates conceptual understanding and procedural fluency. Conceptual knowledge al-
lows students to grasp the underlying principles of algebraic operations, while procedural 
fluency supports the efficient execution of symbolic tasks. However, developing a balance 
between these two dimensions remains a persistent challenge. Students who rely primarily on 
procedural skills often struggle to explain or justify their work, demonstrating gaps in under-
standing that can impede their progress in university mathematics courses. Therefore, foster-
ing both aspects is critical for cultivating robust algebraic reasoning. 

A key characteristic of algebraic reasoning is the ability to generalize mathematical rela-
tionships. Generalization allows students to identify patterns and regularities, making abstrac-
tions that lead to broader principles applicable across mathematical contexts. This generaliz-
ing process is vital in higher education, where students are required to work with functions, 
sequences, and symbolic forms that represent infinite or variable quantities. Without strong 
generalization skills, students may resort to rote procedures that limit their capacity to engage 
meaningfully with advanced mathematical ideas [8]. 

Another essential component of algebraic reasoning is the interpretation of symbolic 
expressions and structures. Symbolic notation serves as a concise representation of mathe-
matical ideas, but its compact form can obscure meaning for students who lack conceptual 
grounding. Misinterpretations often arise when students view symbols merely as objects to 
manipulate rather than as representations of relationships and processes. In higher education, 
where symbolic complexity increases, difficulties in interpretation can significantly hinder stu-
dents’ ability to solve problems and understand new material. 

The ability to manipulate symbolic forms coherently is also central to algebraic reason-
ing. Symbolic manipulation includes transforming expressions, solving equations, and rewrit-
ing mathematical forms to reveal underlying relationships. While many students can perform 
manipulations by following memorized procedures, meaningful reasoning requires under-
standing how and why these transformations work. When students treat symbolic manipula-
tion as mechanical steps, they often make errors that reflect deeper conceptual misunder-
standings. Ensuring that symbolic manipulations are grounded in meaning is therefore essen-
tial for developing strong algebraic reasoning. 

Justifying procedures and solutions represents another critical dimension of algebraic 
reasoning. In higher education, students are expected not only to perform correct operations 
but also to justify their reasoning logically. Justification involves linking symbolic transfor-
mations to mathematical principles, demonstrating awareness of structure, and articulating 
the rationale behind chosen strategies. Without explicit attention to justification, students may 
rely on rote methods that fail when they encounter unfamiliar or complex problems. Encour-
aging justification supports the development of mathematical argumentation, a skill central to 
advanced mathematical thinking. 

Transitions between mathematical representations play a vital role in supporting alge-
braic reasoning. Students must be able to move fluidly among symbolic, graphical, numerical, 
and verbal forms to construct meaningful interpretations of mathematical ideas. Research 
shows that flexible representational thinking enhances students’ ability to understand rela-
tionships and make informed decisions during problem solving. However, many students 
struggle with these transitions, particularly when faced with abstract representations that re-
quire interpretation beyond surface-level features. Strengthening representational fluency is 
thus an important component of developing algebraic reasoning. 

Within the university context, algebraic reasoning serves as a foundation for understand-
ing advanced topics such as calculus, linear algebra, abstract algebra, and mathematical mod-
eling. These domains require students to manipulate complex symbolic structures, interpret 
functional relationships, and generalize concepts across contexts. Students who lack strong 
algebraic reasoning often face significant barriers in these subjects, leading to frustration and 
poor performance. Consequently, educators and researchers emphasize the importance of 
addressing foundational reasoning skills early in higher education to support long-term math-
ematical success. 

Despite its importance, many studies highlight persistent challenges in students’ devel-
opment of algebraic reasoning. Students frequently exhibit proficiency in executing proce-
dures while lacking conceptual understanding, a discrepancy that becomes especially visible 
in problem-solving situations requiring flexible reasoning. This imbalance underscores the 
need for instructional approaches that integrate procedural practice with opportunities for 
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conceptual exploration, pattern recognition, and structural analysis. Addressing these chal-
lenges is essential for helping students develop deeper and more adaptable reasoning abilities. 

Given the complexity and importance of algebraic reasoning, understanding the cogni-
tive processes that support or hinder its development remains a significant focus in mathe-
matics education research. By examining how students approach algebraic tasks, interpret 
symbols, and justify their reasoning, researchers can identify patterns that inform instructional 
improvement. Enhancing students’ algebraic reasoning is not only necessary for their success 
in university mathematics but also fundamental for developing the analytical skills required in 
broader scientific and technological fields. 

Expansion and Transformation of Mathematical Expressions 

The expansion and transformation of algebraic expressions form a central component 
of mathematical activity, particularly in higher education where symbolic complexity increases 
significantly. These skills enable students to rewrite mathematical statements in forms that 
reveal underlying relationships, simplify problem structures, and support further analytical 
steps. Rather than serving as isolated procedures, expansion and transformation function as 
foundational elements of mathematical reasoning, allowing learners to navigate between 
equivalent representations and uncover new insights. As students progress into more ad-
vanced mathematics, their ability to manipulate expressions coherently becomes increasingly 
important for understanding and constructing mathematical arguments. 

Effective expansion of algebraic expressions requires students to recognize structural 
features within the expressions they manipulate. This involves identifying patterns, such as 
binomial forms or distributive structures, and understanding how symbolic components re-
late to one another. When students rely solely on surface-level features, they often miss deeper 
structural cues that guide appropriate transformation. Research shows that students who pos-
sess strong structural awareness are better able to generalize rules, detect errors, and adapt 
their reasoning to unfamiliar problems. Structural insight thus plays a crucial role in enabling 
students to approach expansion tasks with flexibility and understanding [9]. 

Despite the importance of structural awareness, many students struggle with the expan-
sion and transformation of expressions due to an overreliance on memorized procedures. 
Such procedural dependence often leads to common errors, including misapplication of dis-
tributive rules or confusion between coefficients and variables. These mistakes reflect deeper 
misconceptions about how algebraic symbols represent quantities and relationships. When 
students fail to grasp the conceptual foundations of expansion, symbolic manipulation be-
comes disjointed and inconsistent. Addressing these conceptual gaps is essential for strength-
ening students’ reasoning and preventing the recurrence of systematic errors. 

The ability to transform algebraic expressions meaningfully also involves anticipating the 
consequences of symbolic operations. Students must understand how each transformation 
affects the overall mathematical meaning of an expression, including equivalence, functional 
relationships, and domain restrictions. This type of anticipatory reasoning is particularly im-
portant when solving nonroutine problems, where inappropriate transformations can lead 
students away from viable solution paths. Research suggests that students who possess strong 
anticipatory skills exhibit greater coherence in their symbolic reasoning and demonstrate 
higher levels of strategic decision-making during problem solving. 

In advanced mathematical domains such as calculus, linear algebra, and mathematical 
modeling, the expansion and transformation of expressions are indispensable for constructing 
and simplifying complex representations. Students must frequently manipulate symbolic 
forms to derive formulas, analyze functions, or build mathematical models that reflect real-
world phenomena. Proficiency in these skills allows students to engage deeply with material, 
draw meaningful conclusions, and articulate mathematical ideas clearly. Consequently, mas-
tery of expression manipulation is not merely a technical requirement but a key component 
of the conceptual and analytical reasoning demanded in higher education mathematics [10]. 

 

Nonroutine Mathematical Problem Solving 

Nonroutine mathematical problem solving occupies a central place in the development 
of higher-order thinking skills, as it requires students to move beyond familiar algorithms and 
apply flexible reasoning to unfamiliar situations. Unlike routine tasks that follow predictable 
and well-rehearsed patterns, nonroutine problems present novel structures or ambiguous in-
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formation that compel learners to analyze relationships deeply and make sense of the mathe-
matical context. This type of problem solving challenges students to engage in exploration, 
conjecture, and justification, processes that are essential for meaningful mathematical under-
standing. In higher education, exposure to nonroutine problems helps students cultivate the 
ability to adapt their reasoning to complex and less structured tasks. 

A defining characteristic of nonroutine problems is the necessity for strategic decision-
making. Students must determine which concepts, representations, or transformation strate-
gies are relevant to the situation. Because these problems do not offer clear procedural cues, 
learners must draw on their conceptual knowledge to construct a pathway toward a solution. 
Research shows that students often struggle at this stage, particularly when their understand-
ing of underlying concepts is incomplete. The absence of explicit instructions forces them to 
rely on their ability to interpret expressions, identify structural relationships, and formulate 
logical steps, making nonroutine tasks a valuable tool for assessing the depth of mathematical 
reasoning [11]. 

Nonroutine problem solving also highlights students’ ability to make connections across 
different areas of mathematics. These tasks typically require integrating knowledge from mul-
tiple domains, such as algebra, geometry, and functions, in ways that standard procedural 
exercises do not. When students face problems that demand coordination of several ideas, 
their conceptual coherence or lack thereof becomes more visible. Difficulties in transferring 
knowledge across contexts often reveal fragmented understanding or misconceptions that 
may remain hidden during routine practice. Thus, nonroutine tasks offer insight into how 
well students can synthesize and apply mathematical concepts flexibly. 

The role of metacognition becomes particularly important when students work on non-
routine problems. Successful problem solvers tend to monitor their reasoning, evaluate the 
plausibility of intermediate steps, and adjust strategies when necessary. These self-regulatory 
behaviors allow students to navigate complex solution paths and recover from unproductive 
approaches. However, many students lack metacognitive strategies or fail to apply them con-
sistently, leading to difficulties in managing the cognitive demands of nonroutine tasks. 
Strengthening metacognitive skills can therefore enhance learners’ capacity for effective prob-
lem solving and support the development of deeper mathematical thinking. 

In the context of algebraic reasoning, nonroutine problems provide a rich environment 
for examining how students elaborate, interpret, and transform mathematical expressions. 
Such tasks require them to justify each symbolic manipulation and understand how transfor-
mations contribute to the overall solution structure. When students attempt to solve nonrou-
tine problems, their reasoning becomes more transparent, allowing researchers and educators 
to analyze the cognitive processes involved. As a result, investigating students’ performance 
on nonroutine tasks helps identify the reasoning patterns, challenges, and misconceptions 
that influence their ability to work with algebraic expressions at a higher conceptual level. 

Hypothesis 

The hypotheses of this study are grounded in the theoretical understanding that students’ 
algebraic reasoning abilities play a crucial role in how they engage with expansion, transfor-
mation, and interpretation of mathematical expressions within nonroutine problem contexts. 
These hypotheses reflect the expectation that deeper conceptual understanding and structural 
awareness will lead to more accurate, coherent, and flexible reasoning processes. They also 
align with previous findings indicating that students’ success in nonroutine tasks depends not 
only on procedural proficiency but also on their ability to generalize, justify, and adapt strat-
egies according to the demands of the problem [12]. 

It is hypothesized that students with stronger algebraic reasoning will demonstrate more 
accurate and meaningful approaches when expanding or transforming algebraic expressions. 
Such students are expected to rely on their conceptual understanding of algebraic structures 
rather than solely on memorized steps. Their reasoning processes will likely show evidence 
of generalization, structural interpretation, and logical justification that support correct sym-
bolic manipulation in unfamiliar contexts. 

It is further hypothesized that students who struggle with expansion and transformation 
of expressions do so due to underlying conceptual gaps or misconceptions. These challenges 
are expected to manifest in errors such as misapplying the distributive property, misinterpret-
ing variables, or altering symbolic structures in illogical ways. When confronted with nonrou-
tine problems, these students are more likely to demonstrate rigid reasoning, limited flexibil-
ity, and reliance on superficial procedures that do not align with the problem’s demands. 
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Another hypothesis proposes that students who employ diverse reasoning strategies—
such as recognizing structural patterns, decomposing expressions, or generalizing symbolic 
relationships—will perform better on nonroutine tasks than those who depend on fixed or 
procedural approaches. The nature of nonroutine problems requires adaptive thinking, and 
students who can shift between strategies or integrate multiple forms of reasoning are ex-
pected to achieve more complete and coherent solutions. 

A final hypothesis is that the level of students’ algebraic reasoning can be inferred from 
the types of strategies, explanations, and justifications they provide during the problem-solv-
ing process. Students who articulate clear reasoning, consider alternative solution paths, and 
justify their transformations logically are anticipated to show more advanced reasoning capa-
bilities. Conversely, students whose solutions lack explanation, display inconsistencies, or re-
veal unexamined assumptions are expected to demonstrate lower levels of algebraic reason-
ing. 

  
3. Proposed Method 
Research Design 

Participants in this study consist of undergraduate mathematics education students who 
have completed foundational algebra courses and are currently enrolled in higher-level math-
ematics subjects. The selection is purposive, ensuring that participants possess the prerequi-
site knowledge to engage meaningfully with algebraic reasoning tasks [13]. Variation in aca-
demic performance is considered to capture a wide range of reasoning strategies and potential 
conceptual challenges. All participants are informed about the study’s objectives and proce-
dures and voluntarily agree to take part. 

Participants 

Data are collected using three primary instruments: nonroutine algebraic problem tasks, 
semi-structured interviews, and written solution analyses. The problem tasks are designed to 
require expansion, transformation, and interpretation of algebraic expressions beyond routine 
procedures, prompting students to reveal their reasoning processes. Semi-structured inter-
views allow the researcher to probe participants’ thinking, clarify decision-making steps, and 
uncover implicit conceptual understandings. Written solutions serve as artifacts that capture 
symbolic manipulation and reveal patterns of accuracy, error, and structural interpretation.3.3. 
Data Collection Instruments [14]. 

Data Collection Procedure 

Participants complete the nonroutine algebraic tasks individually in a controlled setting. 
Their written responses are collected, and follow-up interviews are conducted to gain further 
insights into their reasoning processes. During interviews, students are asked to explain their 
solution strategies, justify transformations, and reflect on challenges they encountered. All 
interviews are audio-recorded with participants' consent and later transcribed verbatim. Field 
notes are also used to document observations and contextual factors during the problem-
solving session. 

Data Analysis 

Data analysis follows a thematic coding process guided by established qualitative analysis 
techniques. Transcripts, written solutions, and observational notes are reviewed repeatedly to 
identify recurring themes related to students’ algebraic reasoning, conceptual understanding, 
and problem-solving strategies. Coding categories are developed inductively while also in-
formed by theoretical frameworks on algebraic reasoning and expression transformation. The 
analysis seeks to map the reasoning patterns exhibited by students, identify misconceptions, 
and interpret how these elements influence performance in nonroutine tasks. 

Trustworthiness of the Study 

To ensure credibility, triangulation is applied by cross-referencing data from written so-
lutions, interview transcripts, and researcher observations. Member checking is conducted by 
allowing participants to review and confirm the accuracy of interview interpretations. Trans-
ferability is addressed by providing detailed descriptions of the research context, participant 
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characteristics, and data collection procedures. Dependability and confirmability are main-
tained through the use of an audit trail that documents analytical decisions and methodolog-
ical steps throughout the research process [10]. 

4. Results and Discussion 

Emerging Patterns of Algebraic Reasoning 

Emerging patterns of algebraic reasoning among university students reveal significant 
variation in how they navigate symbolic forms, interpret mathematical structures, and generate 
generalized conclusions. The analysis shows that students differ substantially in their ability to 
recognize underlying algebraic relationships, which in turn influences the accuracy and coher-
ence of their solutions. Some students exhibit strong structural awareness, while others rely 
heavily on surface-level procedures. These differences are not merely variations in skill but 
reflect deeper cognitive distinctions in how mathematical meaning is constructed and applied. 

A prominent pattern involves the ability of students to identify algebraic structures em-
bedded within expressions. Students with stronger reasoning consistently recognize forms 
such as binomials, factorable expressions, or functional relationships before manipulating 
symbols. They tend to analyze an expression holistically, determining how its components 
relate, rather than immediately applying an algorithmic rule. This structural recognition allows 
them to approach expansion or transformation tasks with intentionality, selecting strategies 
aligned with the expression’s form. 

Conversely, students who struggle with algebraic reasoning often fail to discern structural 
features and instead approach expressions linearly, term by term. Their reasoning tends to 
follow procedural scripts, such as “apply distributive property” or “simplify the terms,” with-
out first interpreting the global structure. As a result, they frequently misapply rules, especially 
when expressions deviate slightly from familiar patterns. These difficulties highlight a discon-
nect between symbolic manipulation and conceptual interpretation. 

Symbolic understanding also emerges as a clear differentiator among students. Those 
exhibiting high symbolic fluency demonstrate an ability to interpret variables as generalizable 
quantities rather than as placeholders for numbers. They view symbolic expressions as repre-
sentations of broader relationships and can justify transformations based on mathematical 
principles. Their written solutions reflect deliberate choices, such as preserving equivalence or 
maintaining structural integrity, which show sensitivity to the meaning of symbols. 

In contrast, students with weaker symbolic reasoning often treat variables as static or 
context-bound. Their errors frequently involve misinterpreting the role of variables, introduc-
ing inconsistencies, or altering structures unintentionally. Such patterns suggest that their sym-
bolic manipulations are not guided by conceptual reasoning but by fragmented procedural 
memory. These students often express uncertainty during interviews when asked to justify 
transformations, revealing that the meaning behind steps is not fully internalized. 

Generalization abilities further distinguish students’ levels of algebraic reasoning. Strong 
reasoners consistently identify recurring patterns, such as recognizing distributive structures 
or anticipating the outcome of an expansion based on prior experience. They are capable of 
extending reasoning beyond the immediate problem, articulating general principles that apply 
across different tasks. These students often verbalize reasoning such as “any binomial multi-
plied by another binomial will produce four terms initially, which can then be combined de-
pending on like terms.” 

Students with limited generalization capacity tend to view each expression as an isolated 
entity. They require explicit prompts or familiar numerical examples to extend reasoning to 
broader cases. During interviews, they often struggle to articulate how strategies used in one 
problem might apply to another. Their reasoning remains localized, which restricts their ability 
to adapt to nonroutine tasks that demand flexible thinking. 

Variation in depth of reasoning also appears in how students justify their transformations. 
Strong reasoners provide clear, logical explanations supported by algebraic principles. They 
show awareness of the implications of each symbolic manipulation and can reflect on potential 
alternative strategies. Their justifications demonstrate metacognitive engagement, indicating 
that they monitor and evaluate their own reasoning processes during problem solving. 

In comparison, students exhibiting weaker reasoning rarely provide justifications beyond 
procedural statements. Their explanations tend to describe what they did (“I multiplied these 
terms”) rather than why they did it. This lack of justification reveals limited conceptual 
grounding and suggests that their reasoning is primarily operational. When errors occur, they 
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often cannot identify the source because they lack a framework for evaluating correctness 
beyond surface-level procedures. 

These divergent patterns collectively illustrate the broad spectrum of algebraic reasoning 
present among students. The findings emphasize that algebraic proficiency is not merely the 
ability to manipulate symbols but the capacity to understand, interpret, and generalize mathe-
matical structures. Recognizing these variations is crucial for designing instructional ap-
proaches that promote deeper reasoning and move students beyond procedural dependence. 

To summarize emerging patterns, the following table highlights the contrast between 
strong and weak algebraic reasoning observed in the study: 
Table 1. Comparison of Strong and Weak Algebraic Reasoning Patterns 

Reasoning Dimension Strong Algebraic Reasoning 
Weak Algebraic Reason-

ing 

Structural Awareness 
Recognizes global structure before 
manipulation 

Focuses on term-by-term 
procedures 

Symbolic Interpretation 
Treats variables as generalized quan-
tities 

Treats variables as static or 
numeric 

Generalization Identifies patterns, extends reasoning 
Views each problem in iso-
lation 

Justification 
Explains transformations conceptu-
ally 

Describes steps without ra-
tionale 

Flexibility 
Adapts strategies to expression struc-
ture 

Relies on fixed procedures 

Conceptual Understanding versus Procedural Dependence 

Conceptual understanding and procedural dependence represent two contrasting orien-
tations that shape how students engage with algebraic expressions, particularly in tasks requir-
ing expansion and transformation. The findings reveal that students vary widely in the balance 
they maintain between these orientations, with some demonstrating robust conceptual 
grounding while others rely heavily on memorized procedures. This distinction significantly 
influences the quality, accuracy, and flexibility of their mathematical reasoning. 

Students who exhibit strong conceptual understanding approach algebraic expressions 
by first interpreting their structure and meaning. They demonstrate awareness of the relation-
ships among terms, the implications of operations, and the purpose behind each step of ma-
nipulation. When expanding or transforming expressions, these students articulate why a par-
ticular rule applies and how it preserves mathematical equivalence. Their responses display 
coherence, with transformations connected logically to the underlying concepts guiding them. 
Such students also show the ability to predict the outcome of symbolic manipulations, re-
flecting a deeper internalization of algebraic principles. 

In contrast, students dependent on procedural knowledge often approach tasks as se-
quences of steps to be executed rather than concepts to be understood. Their reasoning relies 
on recalling formulas or rules without fully grasping the conditions under which those rules 
apply. When encountering familiar expressions, they can produce correct answers; however, 
deviations from routines — such as nonstandard forms or embedded structures — quickly 
lead to confusion. Their written work often reveals mechanical application of distributive or 
simplification rules, sometimes resulting in transformations that break structural relationships 
or distort equivalence. 

The limitations of procedural dependence become evident in the types of errors students 
frequently commit. A common error involves misapplication of the distributive property, 
such as distributing incorrectly across terms or failing to multiply every component. Students 
also demonstrate difficulties with variable interpretation, often treating variables inconsist-
ently or applying numerical intuition where symbolic reasoning is required. These errors high-
light a core issue: procedures performed without understanding can generate correct results 
only in narrow, predictable contexts but fail under more complex or unfamiliar conditions. 

Conversely, students with stronger conceptual foundations exhibit fewer structural er-
rors and demonstrate greater ability to self-correct. Their mistakes are often minor slips rather 
than misconceptions, and they can articulate the source of their errors during reflection. These 
students recognize when symbolic coherence is disrupted and adjust their reasoning accord-
ingly. Their work reflects a dynamic interplay between conceptual insight and procedural ex-
ecution, where procedures serve as tools rather than the basis of reasoning itself. 

Another notable distinction is the students’ flexibility in adapting their strategies. Con-
ceptually oriented students shift between symbolic, structural, and verbal representations as 



International Journal of Educational Evaluation and Policy Analysis 2025 (October), vol. 2, no. 4, Nurtamam, et al. 124 of 130 

 

needed. They can reframe expressions to reveal hidden patterns or simplify complex forms 
by drawing on conceptual connections. Those reliant on procedures tend to persist with a 
single strategy even when it becomes ineffective, indicating limited adaptability. Interviews 
show that procedural students often express frustration when a familiar algorithm does not 
yield progress, further illustrating their dependence on routine. 

The contrast between conceptual and procedural approaches also appears in students’ 
justifications. Conceptually grounded students provide explanations that reference properties, 
relationships, and the logic behind each step. Their reasoning is often relational, connecting 
one operation to another through an understanding of its purpose. Procedural explanations, 
however, center on describing actions taken rather than reasoning behind them. Statements 
such as “because that is the rule” or “I always multiply like this” reflect a lack of conceptual 
grounding and limited capacity for mathematical justification. 

These patterns collectively reveal that procedural knowledge alone is insufficient for 
dealing with nonroutine algebraic tasks. Without conceptual understanding, students struggle 
to navigate expressions that require interpretation beyond surface-level manipulation. On the 
other hand, conceptual understanding enhances procedural fluency by providing a framework 
within which procedures gain meaning and direction. The findings therefore underscore the 
necessity of instructional approaches that integrate both forms of knowledge, while prioritiz-
ing conceptual depth to support transfer and adaptability. 

To illustrate these contrasting orientations clearly, the following table summarizes the 
key differences observed between students dominated by conceptual understanding and those 
heavily dependent on procedures: 

Table 2. Differences Between Conceptual Understanding and Procedural Dependence in 
Algebraic Reasoning 

Dimension Conceptual Understanding Procedural Dependence 

Approach to Expressions 
Interprets structure before ma-
nipulation 

Applies rules immediately without 
interpretation 

Use of Procedures 
Guided by understanding of 
concepts 

Based on memorized steps or for-
mulas 

Error Patterns 
Fewer structural errors; self-
corrects 

Misapplied rules; inconsistent vari-
able use 

Flexibility 
Adapts strategies to expression 
structure 

Relies on rigid, familiar procedures 

Justification Explains why each step is valid 
Describes only what steps were 
taken 

 
Strategies Used in Expanding and Transforming Expressions 
The Multiple  

Students’ strategies for expanding and transforming algebraic expressions reveal a wide 
spectrum of reasoning approaches, ranging from highly structured manipulation to ad-hoc 
procedures that rely on isolated rules. As the data demonstrate, many students approach al-
gebraic transformation with the intention of applying familiar techniques, yet their level of 
strategic control over these techniques varies considerably. Understanding these strategies 
provides critical insight into how students navigate symbolic complexity and how deeply they 
grasp the underlying algebraic structures. 

One common strategy observed is rule-based expansion, where students apply distribu-
tive, associative, and commutative properties directly and systematically. This approach is of-
ten effective when students possess automaticity in procedural manipulation and can recall 
algebraic identities with ease. However, its success depends on whether students understand 
when specific rules are appropriate and how they connect to the structural features of the 
expression being manipulated. Those who rely solely on memorized steps tend to apply these 
rules rigidly, even when the expression requires a different or more flexible approach. 

In contrast, some students demonstrate structure-driven strategies, focusing on identi-
fying patterns within expressions before performing any manipulation. These students ana-
lyze the form of the expression—such as recognizing a binomial pattern, factoring schema, 
or opportunities to apply exponent rules—before committing to symbolic transformation. 
This strategy tends to result in more efficient solutions, especially in tasks involving nested 
structures or nonroutine manipulations. It also reflects a deeper conceptual understanding, as 
students purposefully seek structures that support meaningful transformations. 

Another observed strategy involves recursive decomposition, where students break 
down complex expressions into smaller, more manageable subexpressions. Through stepwise 
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simplification, they reconstruct the expression using known identities or previously solved 
components. This strategy is beneficial for handling multi-layered algebraic statements, such 
as those involving composition of functions or expressions with multiple variables. Students 
using this approach tend to maintain consistency in symbolic representation, reducing errors 
that arise from treating the expression as a single, unwieldy unit. 

However, not all strategies employed by students are equally effective. Some students 
adopt a trial-and-error approach, performing transformations without a clear sense of direc-
tion or justification. This approach leads to inconsistencies, especially when students experi-
ment with operations that are not structurally justified. As a result, errors such as incorrect 
distribution, inconsistent handling of negative signs, or unwarranted assumptions about 
equivalence frequently appear. These errors highlight the need for instructional emphasis on 
strategic planning rather than mechanical execution. 

A notable pattern is that students who struggle often overlook the relational meaning of 
symbols and focus instead on superficial features of the expression. For example, encounter-
ing parentheses often prompts immediate distribution, even in cases where factoring or sub-
stitution would be a more appropriate strategy. This behavior indicates a default procedural 
habit, suggesting that students may not yet view algebraic expressions as objects that can be 
manipulated flexibly according to their structural properties. 

On the other hand, students who engage in relational reasoning demonstrate an ability 
to view expressions holistically. They consider equivalence not only in terms of visual simi-
larity but as a logical relationship grounded in algebraic principles. These students recognize 
that transformation is not merely about rewriting expressions but about preserving inherent 
structure while altering form. Their strategies include substitution of subexpressions, reor-
ganization of terms to reveal latent patterns, and intentional selection of transformation path-
ways that reduce complexity. 

The data also reveal a subset of students who effectively combine procedural fluency 
with conceptual insight. These students switch flexibly between symbolic manipulation, struc-
tural recognition, and strategic simplification depending on the task demands. Their versatility 
allows them to choose methods that reduce cognitive load while maintaining accuracy, such 
as converting complicated radicals to exponent forms before expansion or using factoring to 
reverse incorrect expansion pathways. 

To illustrate the variation in strategy use, the following table summarizes the dominant 
strategies identified in relation to performance indicators observed during the study. 

 
 
 
 
 
 
 
 
 
 

Table 3. Dominant Strategies in Algebraic Expansion and Transformation 

Strategy Type Description Typical Indicators 
Associated Per-
formance Level 

Rule-based manipu-
lation 

Applying distributive, associa-
tive, and commutative rules di-
rectly 

Correct but rigid transfor-
mations; errors when structure 
is unfamiliar 

Moderate 

Structure-driven 
analysis 

Identifying underlying patterns 
before manipulation 

Efficient transformations; 
recognition of algebraic identi-
ties 

High 

Recursive decompo-
sition 

Breaking expressions into 
smaller subexpressions 

Stepwise organization; fewer 
symbolic errors 

High 

Trial-and-error ma-
nipulation 

Unsystematic symbolic opera-
tions 

Inconsistencies; unjustified 
transformations 

Low 

Relational reasoning 
Viewing expressions holistically 
and structurally 

Flexible strategy switching; ac-
curate simplification 

High 

 
Overall, the variety of strategies used by students showcases not only their procedural 

abilities but also the depth of their conceptual reasoning. Effective strategies tend to reflect a 
strong awareness of algebraic structures, whereas ineffective ones often arise from procedural 
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dependence and lack of symbolic control. These findings underscore the importance of pro-
moting strategic flexibility in instruction, enabling students to see algebraic expressions not 
merely as symbols to be manipulated but as structured entities that invite thoughtful and 
purposeful transformation. 

Student Approaches to Nonroutine Problem-Solving 

Students’ approaches to nonroutine problem-solving reveal a broad range of cognitive 
strategies that reflect their readiness to engage with unfamiliar mathematical tasks. Unlike 
routine exercises that rely on memorized procedures, nonroutine problems require students 
to interpret the structure of the task, explore potential pathways, and make strategic decisions. 
The data show that students who performed well on these tasks typically exhibited a willing-
ness to analyze the problem deeply before attempting symbolic manipulation, demonstrating 
cognitive flexibility that aligns with higher-order thinking. 

A prominent approach among successful students is exploratory reasoning, where they 
begin by examining the problem from multiple angles to identify underlying patterns and 
relationships. These students frequently sketch diagrams, reframe the problem in their own 
words, or test small cases to gain insight into its structure. This exploratory phase allows them 
to form preliminary conjectures that guide their next steps, resulting in solutions that are both 
coherent and justified. 

Another effective approach involves strategic decomposition, where students break 
down a complex nonroutine task into manageable subproblems. By isolating components of 
the task, they reduce cognitive load and focus on solving smaller pieces that eventually con-
tribute to the overall solution. Students who apply this strategy tend to produce solution path-
ways that are logically sequenced, demonstrating clear connections between substeps. This 
method reflects the type of metacognitive planning essential for complex problem-solving. 

Some students employ analogical reasoning, attempting to map features of the unfamiliar 
problem onto problems they have previously encountered. When executed successfully, this 
approach enables students to repurpose known strategies in novel contexts, producing effi-
cient solutions. However, this approach is only beneficial when students correctly identify 
relevant similarities; misapplied analogies often lead to incomplete or incorrect solutions, il-
lustrating the fine balance required in transferring prior knowledge. 

Students who struggle with nonroutine tasks often rely on trial-and-error techniques, 
characterized by unsystematic attempts to manipulate expressions or test arbitrary values. 
This approach lacks strategic grounding and typically produces fragmented, incoherent solu-
tions. The absence of structural understanding becomes apparent in these cases, as students 
fail to identify which operations are meaningful and which are merely mechanical. 

A notable challenge for some students is cognitive rigidity, or the tendency to cling to 
familiar procedures even when these procedures are inappropriate for the task. These students 
may attempt to apply routine algebraic techniques, such as standard expansions or substitu-
tions, even when the problem demands pattern recognition, reasoning with generality, or non-
algorithmic thinking. This rigidity prevents them from adapting their approach to the unique 
demands of the problem. 

Conversely, students showing higher-order reasoning demonstrate strong metacognitive 
awareness. They monitor their solution processes, reflect on errors, and adjust their strategies 
when encountering obstacles. This reflective regulation allows them to pivot between strate-
gies, abandon ineffective paths, and refine their reasoning based on emerging insights. Their 
solutions are not only correct but also demonstrate a coherent, reflective problem-solving 
narrative. 

The influence of strategy variation on solution quality is evident in the results. Students 
who employed analytical and flexible strategies tended to produce complete solutions, artic-
ulate justifications, and maintain symbolic accuracy. Those who relied on procedural habits 
or unstructured exploration often produced partial or incorrect answers, marked by gaps in 
logical reasoning or misuse of algebraic symbols. The relationship between strategy choice 
and performance highlights the critical role of adaptivity in mathematical problem-solving. 

To illustrate the diversity of approaches, the following table summarizes the main pat-
terns of student strategies observed in nonroutine problem-solving tasks. 

Table 4. Patterns of Student Approaches to Nonroutine Problem-Solving 

Approach Type Key Characteristics Strengths 
Common Weak-

nesses 
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Exploratory reasoning 
Examines multiple representations, 
tests small cases 

Deep insight; flexible 
reasoning 

Time-consuming; 
may lack direction 
early on 

Strategic decomposi-
tion 

Breaks tasks into subproblems 
Organized, structured 
solutions 

Risk of focusing 
too narrowly on 
parts 

Analogical reasoning Relates problem to known patterns 
Efficient transfer of 
knowledge 

Misapplied analo-
gies lead to errors 

Trial-and-error 
Unsystematic attempts to manipu-
late symbols 

Occasional correct 
guesses 

Poor structure; in-
consistent reason-
ing 

Metacognitive regula-
tion 

Monitors and adjusts strategies 
High accuracy; coher-
ent reasoning 

Requires strong 
prior knowledge 

 

Quality and Coherence of Mathematical Explanation 

The quality and coherence of students’ mathematical explanations provide critical in-
sights into their algebraic reasoning processes, particularly when solving tasks involving ex-
pression expansion, transformation, and nonroutine problem-solving. The data indicate sig-
nificant variation in the clarity, structure, and logical justification presented by students. High-
performing students generally offer explanations that demonstrate not only procedural cor-
rectness but also a deep understanding of the underlying mathematical principles guiding each 
step. Their reasoning reveals a capacity to articulate connections between symbolic manipu-
lations and conceptual frameworks, forming explanations that are both logically sound and 
pedagogically meaningful. 

One prominent characteristic of coherent explanations is the presence of clear step-by-
step articulation. Students who excel in this aspect are able to present their reasoning in a 
logically ordered sequence, ensuring that each transformation or operation is justified explic-
itly. They explain why a particular distributive property, factoring rule, or symbolic manipu-
lation is applied, highlighting their awareness of algebraic structure. This form of articulation 
reflects strong metacognitive skills and demonstrates the ability to communicate mathemati-
cal ideas effectively. 

Another important feature of high-quality explanations is the use of accurate mathemat-
ical language. These students consistently employ appropriate terminology—such as “coeffi-
cient,” “variable,” “equivalent expression,” “structural pattern,” or “generalization”—to de-
scribe their reasoning. Their precise use of language enhances clarity and shows mastery of 
disciplinary discourse. Students who use mathematical language correctly tend to produce 
explanations that align well with theoretical expectations of algebraic reasoning. 

In contrast, students with weaker explanations often rely on vague or informal descrip-
tions that obscure the logic behind their steps. Their explanations may include statements 
such as “I just moved it,” “I changed it,” or “I know the formula,” which do not reveal the 
conceptual basis of their decisions. This lack of specificity suggests a reliance on memorized 
procedures rather than structural understanding. As a result, their explanations fail to com-
municate the reasoning needed to justify their solutions, reducing the overall coherence. 

Logical justification also plays a central role in assessing explanation quality. Students 
with strong reasoning support each transformation with valid mathematical arguments, ref-
erencing properties such as commutativity, associativity, or distributivity when appropriate. 
They demonstrate an understanding that algebraic manipulation is not arbitrary but governed 
by rules that preserve equivalence. Conversely, errors in justification often stem from mis-
conceptions, such as misinterpreting variable roles or overgeneralizing rules. These mistakes 
reveal underlying cognitive gaps that hinder the development of deeper reasoning. 

The ability to use representations appropriately further distinguishes high- from low-
quality explanations. Students with strong conceptual understanding incorporate tables, sym-
bolic breakdowns, or diagrams to support their reasoning when necessary. These representa-
tions serve as tools for clarifying or reinforcing their arguments. Meanwhile, students who 
struggle tend to avoid auxiliary representations altogether or use them incorrectly, leading to 
fragmented and sometimes contradictory explanations. 

Coherence is also influenced by students’ ability to connect intermediate steps to the 
overall goal of the problem. Strong students consistently relate their manipulations back to 
the objective—such as simplifying an expression, identifying structure, or solving an un-
known. This global awareness ensures that their explanations form a unified narrative rather 
than a collection of disconnected steps. Weak explanations, by contrast, often display a lack 
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of direction, with students performing symbolic operations without articulating how those 
steps contribute to the final solution. 

The data also reveal differences in how students handle errors within their explanations. 
Students with mature reasoning acknowledge mistakes, revise their steps, and incorporate the 
correction into their explanation. This reflective behavior strengthens the coherence of their 
reasoning. Students with weaker reasoning either fail to recognize inconsistencies or leave 
contradictions unresolved, producing explanations that lack internal logic. 

To synthesize the findings, the table below summarizes the primary dimensions that 
distinguish high-quality from low-quality mathematical explanations among participants. 

Table 5. Key Dimensions of Quality and Coherence in Students’ Mathematical Explanations 

Dimension 
Characteristics of High-Quality Ex-

planations 
Characteristics of Low-Quality 

Explanations 

Logical structure Clear sequence; each step justified 
Disorganized steps; missing justifica-
tion 

Mathematical language Precise terminology; correct usage 
Vague wording; incorrect or informal 
terms 

Conceptual justification Reasoning tied to algebraic properties Reliance on memorized procedures 

Representation use 
Appropriate, supportive diagrams or 
tables 

Little or no representation; incorrect 
use 

Global coherence Steps aligned with overall goal Disconnected steps; unclear purpose 

 
Overall, the quality and coherence of students’ mathematical explanations provide a 

meaningful indicator of their algebraic reasoning abilities. Students who combine structural 
awareness, precise language, and clear justification demonstrate reasoning aligned with estab-
lished theories of advanced algebraic thinking. These findings highlight the importance of 
instructional practices that emphasize explanation, justification, and mathematical communi-
cation, ensuring that students not only perform procedures but also understand and articulate 
the reasoning that legitimizes those procedures. 

6. Conclusions 

The conclusions of this study highlight the complexity and diversity of students’ alge-
braic reasoning processes when engaging with tasks involving expression expansion, symbolic 
transformation, and nonroutine problem-solving. The findings demonstrate that students 
with strong conceptual understanding exhibit flexible, strategic, and reflective reasoning that 
enables them to navigate unfamiliar mathematical challenges effectively. Their problem-solv-
ing approaches are characterized by coherent explanations, precise mathematical language, 
and the ability to justify each transformation based on underlying algebraic principles. This 
group consistently shows the capacity to generalize patterns, interpret symbolic relationships, 
and maintain structural awareness—key indicators of advanced algebraic reasoning. 

In contrast, students who rely heavily on procedural memorization encounter persistent 
difficulties when required to apply reasoning beyond routine tasks. Their explanations often 
lack clarity, coherence, and justification, indicating gaps in conceptual understanding. Mis-
conceptions and errors commonly arise from overgeneralized rules, limited structural recog-
nition, and inconsistent symbolic manipulation. These patterns highlight the importance of 
fostering deep conceptual understanding rather than focusing solely on procedural fluency in 
mathematics instruction at the university level. 

Overall, the study underscores the need for instructional approaches that prioritize rea-
soning, explanation, and structural understanding in algebra. Effective teaching practices 
should encourage students to explore multiple solution strategies, articulate their reasoning 
explicitly, and engage with mathematical tasks that promote generalization and flexible think-
ing. By integrating these elements into learning environments, educators can better support 
students in developing the level of algebraic reasoning necessary for advanced mathematical 
study and for solving complex, nonroutine problems. 
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