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Abstract: This study investigates the algebraic reasoning processes of university students when ex-
panding mathematical expressions in the context of nonroutine problem-solving. The research adopts
a qualitative approach to explore how students interpret algebraic structures, apply symbolic transfor-
mations, and construct logical explanations while working through unfamiliar tasks. Data were col-
lected through written tests, task-based interviews, and detailed analysis of students’ solution strategies.
The findings reveal significant variation in students’ ability to generalize patterns, recognize structural
relationships, and justify algebraic procedures. Students with strong conceptual understanding demon-
strated flexible reasoning, coherent explanations, and appropriate use of algebraic properties. In con-
trast, students who relied heavily on procedural rules often struggled with symbolic manipulation, pro-
duced fragmented reasoning, and exhibited misconceptions related to variables and distributive oper-
ations. These results highlight the importance of fostering conceptual understanding, metacognitive
awareness, and reasoning-oriented instruction in university mathematics. The study provides insights
for educators secking to design learning environments that promote deeper algebraic thinking and

enhance students’ ability to solve complex, nonroutine problems.

Keywords: Algebraic Reasoning; Mathematical Expression Expansion; Nonroutine Problem-Solving;
Qualitative Analysis; Symbolic Manipulation

1. Introduction

The development of algebraic reasoning has become a central focus in contemporary
mathematics education, particularly as higher education institutions aim to cultivate students’
abilities to engage in advanced problem-solving and analytical thinking. Algebraic reasoning
is not merely the manipulation of symbols; it represents a cognitive process that allows indi-
viduals to interpret, generalize, and transform mathematical relationships. In university set-
tings, this capacity becomes increasingly important, as students must work with complex
mathematical ideas and apply them in various contexts. Consequently, understanding how
students develop and use algebraic reasoning is essential for assessing the effectiveness of
instructional approaches and identifying areas that require pedagogical improvement [1].

Nonroutine mathematical problems provide a meaningful platform for evaluating alge-
braic reasoning, as they require students to move beyond memorized procedures and employ
deeper conceptual understanding. Unlike routine tasks that follow predictable patterns, non-
routine problems challenge students to analyze unfamiliar structures, construct strategies, and
justify their reasoning. These tasks therefore serve as an effective lens for examining how
students interpret expressions, make transformations, and engage in multi-step reasoning
processes. By studying students’ performance on nonroutine problems, educators and re-
searchers can gain insight into the sophistication and flexibility of their algebraic thinking [2].

Although many university students have been exposed to algebra for years, research
indicates that their ability to manipulate and interpret algebraic expressions meaningfully re-
mains limited. Students often rely heavily on procedural approaches without fully understand-
ing the underlying concepts. When faced with nonroutine problems, these surface-level strat-
egies frequently fail, revealing gaps in conceptual comprehension and reasoning fluency. Such
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challenges suggest that traditional instructional methods may not sufficiently support the de-
velopment of algebraic reasoning, particularly in areas requiring abstraction and symbolic ma-
nipulation.

In the context of higher education, the ability to expand or elaborate on algebraic ex-
pressions is critical for success in various mathematical domains, including calculus, linear
algebra, and discrete mathematics [3]. Expression manipulation forms the basis for deriving
formulas, solving equations, analyzing functions, and interpreting mathematical models. Yet,
students’ errors in expansion and transformation often stem from deeper cognitive difficul-
ties, such as misunderstanding symbolic representations or failing to connect algebraic pro-
cedures with real mathematical meaning. These difficulties become even more pronounced
when problems are embedded in unfamiliar or complex contexts [4].

The cognitive processes underlying algebraic reasoning involve several interconnected
skills, such as recognizing patterns, constructing relationships, performing symbolic transfor-
mations, and validating solutions. When students engage with nonroutine tasks, these skills
must work in concert, requiring them to think flexibly and adaptively. However, studies sug-
gest that many students struggle to coordinate these cognitive components effectively. By
exploring how they approach such problems, researchers can better understand the nature of
these difficulties and the reasoning patterns that emerge during problem solving.

A qualitative approach offers valuable insights into the nuances of students’ algebraic
reasoning, as it allows for the exploration of thought processes rather than simply evaluating
correctness. Through interviews, think-aloud protocols, and analysis of written work, re-
searchers can uncover students’ strategies, misconceptions, and underlying conceptual frame-
works. This approach enables a deeper understanding of how students interpret symbolic
expressions, navigate problem-solving pathways, and justify their choices when working
through nonroutine mathematical challenges [5].

Existing literature highlights several common issues in students’ algebraic reasoning,
such as overgeneralization of rules, misinterpretation of symbolic notation, and reliance on
rote procedures. However, these findings are often derived from general assessments or rou-
tine tasks, leaving a gap in understanding how students reason in more demanding problem-
solving situations. There remains a need to investigate how students break down mathemati-
cal expressions, decide on appropriate transformations, and evaluate the coherence of their
solutions under nonroutine conditions [0].

Furthermore, the increasing emphasis on higher-order thinking skills within university
mathematics curricula underscores the importance of cultivating strong algebraic reasoning
abilities. As the complexity of mathematical content rises, students must be able to engage in
meaningful manipulation and interpretation of algebraic expressions. Understanding how
they navigate these demands in the context of unfamiliar or complex problems can inform
the design of instructional interventions that better support their learning needs.

Given these considerations, examining university students’ algebraic reasoning in the
context of nonroutine problem solving is both timely and necessary. Such studies can con-
tribute to the growing body of knowledge on mathematical cognition, provide insights into
students’ conceptual understanding, and highlight the cognitive challenges that arise when
students attempt to elaborate or expand algebraic expressions in novel situations. These in-
sights can, in turn, guide the development of teaching strategies that foster deeper, more
flexible reasoning abilities.

This study aims to analyze the processes through which university students engage in
algebraic reasoning when elaborating mathematical expressions in nonroutine problems. By
exploring their thought patterns, strategies, and conceptual challenges, the research seeks to
provide a comprehensive understanding of the cognitive mechanisms underlying successful
and unsuccessful reasoning. Ultimately, the findings are expected to support the enhancement
of instructional practices that promote meaningful algebraic thinking at the university level.

2. Literature review
Algebraic Reasoning in Higher Education

Algebraic reasoning has increasingly been acknowledged as a cornerstone of mathemat-
ical competence, especially in higher education where students encounter complex abstrac-
tions and formal symbolic systems. This form of reasoning enables learners to move beyond
arithmetic thinking and engage with generalized mathematical ideas, patterns, and structures.
As university curricula place greater emphasis on abstraction, students are expected to reason
algebraically in ways that support deeper comprehension and advanced problem solving. The
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ability to think relationally, recognize structures, and manipulate algebraic forms becomes
essential for navigating the demands of higher-level mathematics [7].

Researchers commonly describe algebraic reasoning as a multifaceted cognitive process
that integrates conceptual understanding and procedural fluency. Conceptual knowledge al-
lows students to grasp the underlying principles of algebraic operations, while procedural
fluency supports the efficient execution of symbolic tasks. However, developing a balance
between these two dimensions remains a persistent challenge. Students who rely primarily on
procedural skills often struggle to explain or justify their work, demonstrating gaps in under-
standing that can impede their progress in university mathematics courses. Therefore, foster-
ing both aspects is critical for cultivating robust algebraic reasoning.

A key characteristic of algebraic reasoning is the ability to generalize mathematical rela-
tionships. Generalization allows students to identify patterns and regularities, making abstrac-
tions that lead to broader principles applicable across mathematical contexts. This generaliz-
ing process is vital in higher education, where students are required to work with functions,
sequences, and symbolic forms that represent infinite or variable quantities. Without strong
generalization skills, students may resort to rote procedures that limit their capacity to engage
meaningfully with advanced mathematical ideas [8].

Another essential component of algebraic reasoning is the interpretation of symbolic
expressions and structures. Symbolic notation serves as a concise representation of mathe-
matical ideas, but its compact form can obscure meaning for students who lack conceptual
grounding. Misinterpretations often arise when students view symbols merely as objects to
manipulate rather than as representations of relationships and processes. In higher education,
where symbolic complexity increases, difficulties in interpretation can significantly hinder stu-
dents’ ability to solve problems and understand new material.

The ability to manipulate symbolic forms coherently is also central to algebraic reason-
ing. Symbolic manipulation includes transforming expressions, solving equations, and rewrit-
ing mathematical forms to reveal underlying relationships. While many students can perform
manipulations by following memorized procedures, meaningful reasoning requires under-
standing how and why these transformations work. When students treat symbolic manipula-
tion as mechanical steps, they often make errors that reflect deeper conceptual misunder-
standings. Ensuring that symbolic manipulations are grounded in meaning is therefore essen-
tial for developing strong algebraic reasoning.

Justifying procedures and solutions represents another critical dimension of algebraic
reasoning. In higher education, students are expected not only to perform correct operations
but also to justify their reasoning logically. Justification involves linking symbolic transfor-
mations to mathematical principles, demonstrating awareness of structure, and articulating
the rationale behind chosen strategies. Without explicit attention to justification, students may
rely on rote methods that fail when they encounter unfamiliar or complex problems. Encour-
aging justification supports the development of mathematical argumentation, a skill central to
advanced mathematical thinking.

Transitions between mathematical representations play a vital role in supporting alge-
braic reasoning. Students must be able to move fluidly among symbolic, graphical, numerical,
and verbal forms to construct meaningful interpretations of mathematical ideas. Research
shows that flexible representational thinking enhances students’ ability to understand rela-
tionships and make informed decisions during problem solving. However, many students
struggle with these transitions, particularly when faced with abstract representations that re-
quire interpretation beyond surface-level features. Strengthening representational fluency is
thus an important component of developing algebraic reasoning.

Within the university context, algebraic reasoning serves as a foundation for understand-
ing advanced topics such as calculus, linear algebra, abstract algebra, and mathematical mod-
eling. These domains require students to manipulate complex symbolic structures, interpret
functional relationships, and generalize concepts across contexts. Students who lack strong
algebraic reasoning often face significant barriers in these subjects, leading to frustration and
poor performance. Consequently, educators and researchers emphasize the importance of
addressing foundational reasoning skills early in higher education to support long-term math-
ematical success.

Despite its importance, many studies highlight persistent challenges in students’ devel-
opment of algebraic reasoning. Students frequently exhibit proficiency in executing proce-
dures while lacking conceptual understanding, a discrepancy that becomes especially visible
in problem-solving situations requiring flexible reasoning. This imbalance underscores the
need for instructional approaches that integrate procedural practice with opportunities for
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conceptual exploration, pattern recognition, and structural analysis. Addressing these chal-
lenges is essential for helping students develop deeper and more adaptable reasoning abilities.

Given the complexity and importance of algebraic reasoning, understanding the cogni-
tive processes that support or hinder its development remains a significant focus in mathe-
matics education research. By examining how students approach algebraic tasks, interpret
symbols, and justify their reasoning, researchers can identify patterns that inform instructional
improvement. Enhancing students’ algebraic reasoning is not only necessary for their success
in university mathematics but also fundamental for developing the analytical skills requited in
broader scientific and technological fields.

Expansion and Transformation of Mathematical Expressions

The expansion and transformation of algebraic expressions form a central component
of mathematical activity, particularly in higher education where symbolic complexity increases
significantly. These skills enable students to rewrite mathematical statements in forms that
reveal underlying relationships, simplify problem structures, and support further analytical
steps. Rather than serving as isolated procedures, expansion and transformation function as
foundational elements of mathematical reasoning, allowing learners to navigate between
equivalent representations and uncover new insights. As students progress into more ad-
vanced mathematics, their ability to manipulate expressions coherently becomes increasingly
important for understanding and constructing mathematical arguments.

Effective expansion of algebraic expressions requires students to recognize structural
features within the expressions they manipulate. This involves identifying patterns, such as
binomial forms or distributive structures, and understanding how symbolic components re-
late to one another. When students rely solely on surface-level features, they often miss deeper
structural cues that guide appropriate transformation. Research shows that students who pos-
sess strong structural awareness are better able to generalize rules, detect errors, and adapt
their reasoning to unfamiliar problems. Structural insight thus plays a crucial role in enabling
students to approach expansion tasks with flexibility and understanding [9].

Despite the importance of structural awareness, many students struggle with the expan-
sion and transformation of expressions due to an overreliance on memorized procedures.
Such procedural dependence often leads to common errors, including misapplication of dis-
tributive rules or confusion between coefficients and variables. These mistakes reflect deeper
misconceptions about how algebraic symbols represent quantities and relationships. When
students fail to grasp the conceptual foundations of expansion, symbolic manipulation be-
comes disjointed and inconsistent. Addressing these conceptual gaps is essential for strength-
ening students’ reasoning and preventing the recurrence of systematic errors.

The ability to transform algebraic expressions meaningfully also involves anticipating the
consequences of symbolic operations. Students must understand how each transformation
affects the overall mathematical meaning of an expression, including equivalence, functional
relationships, and domain restrictions. This type of anticipatory reasoning is particularly im-
portant when solving nonroutine problems, where inappropriate transformations can lead
students away from viable solution paths. Research suggests that students who possess strong
anticipatory skills exhibit greater coherence in their symbolic reasoning and demonstrate
higher levels of strategic decision-making during problem solving.

In advanced mathematical domains such as calculus, linear algebra, and mathematical
modeling, the expansion and transformation of expressions are indispensable for constructing
and simplifying complex representations. Students must frequently manipulate symbolic
forms to derive formulas, analyze functions, or build mathematical models that reflect real-
world phenomena. Proficiency in these skills allows students to engage deeply with material,
draw meaningful conclusions, and articulate mathematical ideas clearly. Consequently, mas-
tery of expression manipulation is not merely a technical requirement but a key component
of the conceptual and analytical reasoning demanded in higher education mathematics [10].

Nonroutine Mathematical Problem Solving

Nonroutine mathematical problem solving occupies a central place in the development
of higher-order thinking skills, as it requires students to move beyond familiar algorithms and
apply flexible reasoning to unfamiliar situations. Unlike routine tasks that follow predictable
and well-rehearsed patterns, nonroutine problems present novel structures or ambiguous in-
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formation that compel learners to analyze relationships deeply and make sense of the mathe-
matical context. This type of problem solving challenges students to engage in exploration,
conjecture, and justification, processes that are essential for meaningful mathematical under-
standing. In higher education, exposure to nonroutine problems helps students cultivate the
ability to adapt their reasoning to complex and less structured tasks.

A defining characteristic of nonroutine problems is the necessity for strategic decision-
making. Students must determine which concepts, representations, or transformation strate-
gles are relevant to the situation. Because these problems do not offer clear procedural cues,
learners must draw on their conceptual knowledge to construct a pathway toward a solution.
Research shows that students often struggle at this stage, particularly when their understand-
ing of undetlying concepts is incomplete. The absence of explicit instructions forces them to
rely on their ability to interpret expressions, identify structural relationships, and formulate
logical steps, making nonroutine tasks a valuable tool for assessing the depth of mathematical
reasoning [11].

Nonroutine problem solving also highlights students’ ability to make connections across
different areas of mathematics. These tasks typically require integrating knowledge from mul-
tiple domains, such as algebra, geometry, and functions, in ways that standard procedural
exercises do not. When students face problems that demand coordination of several ideas,
their conceptual coherence or lack thereof becomes more visible. Difficulties in transferring
knowledge across contexts often reveal fragmented understanding or misconceptions that
may remain hidden during routine practice. Thus, nonroutine tasks offer insight into how
well students can synthesize and apply mathematical concepts flexibly.

The role of metacognition becomes particularly important when students work on non-
routine problems. Successful problem solvers tend to monitor their reasoning, evaluate the
plausibility of intermediate steps, and adjust strategies when necessary. These self-regulatory
behaviors allow students to navigate complex solution paths and recover from unproductive
approaches. However, many students lack metacognitive strategies or fail to apply them con-
sistently, leading to difficulties in managing the cognitive demands of nonroutine tasks.
Strengthening metacognitive skills can therefore enhance learners’ capacity for effective prob-
lem solving and support the development of deeper mathematical thinking.

In the context of algebraic reasoning, nonroutine problems provide a rich environment
for examining how students elaborate, interpret, and transform mathematical expressions.
Such tasks require them to justify each symbolic manipulation and understand how transfor-
mations contribute to the overall solution structure. When students attempt to solve nonrou-
tine problems, their reasoning becomes more transparent, allowing researchers and educators
to analyze the cognitive processes involved. As a result, investigating students’ performance
on nonroutine tasks helps identify the reasoning patterns, challenges, and misconceptions
that influence their ability to work with algebraic expressions at a higher conceptual level.

Hypothesis

The hypotheses of this study are grounded in the theoretical understanding that students’
algebraic reasoning abilities play a crucial role in how they engage with expansion, transfor-
mation, and interpretation of mathematical expressions within nonroutine problem contexts.
These hypotheses reflect the expectation that deeper conceptual understanding and structural
awareness will lead to more accurate, coherent, and flexible reasoning processes. They also
align with previous findings indicating that students’ success in nonroutine tasks depends not
only on procedural proficiency but also on their ability to generalize, justify, and adapt strat-
egies according to the demands of the problem [12].

It is hypothesized that students with stronger algebraic reasoning will demonstrate more
accurate and meaningful approaches when expanding or transforming algebraic expressions.
Such students are expected to rely on their conceptual understanding of algebraic structures
rather than solely on memorized steps. Their reasoning processes will likely show evidence
of generalization, structural interpretation, and logical justification that support correct sym-
bolic manipulation in unfamiliar contexts.

Itis further hypothesized that students who struggle with expansion and transformation
of expressions do so due to underlying conceptual gaps or misconceptions. These challenges
are expected to manifest in errors such as misapplying the distributive property, misinterpret-
ing variables, or altering symbolic structures in illogical ways. When confronted with nonrou-
tine problems, these students are more likely to demonstrate rigid reasoning, limited flexibil-
ity, and reliance on superficial procedures that do not align with the problem’s demands.
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Another hypothesis proposes that students who employ diverse reasoning strategies—
such as recognizing structural patterns, decomposing expressions, or generalizing symbolic
relationships—will perform better on nonroutine tasks than those who depend on fixed or
procedural approaches. The nature of nonroutine problems requires adaptive thinking, and
students who can shift between strategies or integrate multiple forms of reasoning are ex-
pected to achieve more complete and coherent solutions.

A final hypothesis is that the level of students’ algebraic reasoning can be inferred from
the types of strategies, explanations, and justifications they provide during the problem-solv-
ing process. Students who articulate clear reasoning, consider alternative solution paths, and
justify their transformations logically are anticipated to show more advanced reasoning capa-
bilities. Conversely, students whose solutions lack explanation, display inconsistencies, or re-
veal unexamined assumptions are expected to demonstrate lower levels of algebraic reason-

ng.
3. Proposed Method

Research Design

Participants in this study consist of undergraduate mathematics education students who
have completed foundational algebra courses and are currently enrolled in higher-level math-
ematics subjects. The selection is purposive, ensuring that participants possess the prerequi-
site knowledge to engage meaningfully with algebraic reasoning tasks [13]. Variation in aca-
demic performance is considered to capture a wide range of reasoning strategies and potential
conceptual challenges. All participants are informed about the study’s objectives and proce-
dures and voluntarily agree to take part.

Participants

Data are collected using three primary instruments: nonroutine algebraic problem tasks,
semi-structured interviews, and written solution analyses. The problem tasks are designed to
require expansion, transformation, and interpretation of algebraic expressions beyond routine
procedures, prompting students to reveal their reasoning processes. Semi-structured inter-
views allow the researcher to probe participants’ thinking, clarify decision-making steps, and
uncover implicit conceptual understandings. Written solutions serve as artifacts that capture
symbolic manipulation and reveal patterns of accuracy, error, and structural interpretation.3.3.
Data Collection Instruments [14].

Data Collection Procedure

Participants complete the nonroutine algebraic tasks individually in a controlled setting.
Their written responses are collected, and follow-up interviews are conducted to gain further
insights into their reasoning processes. During interviews, students are asked to explain their
solution strategies, justify transformations, and reflect on challenges they encountered. All
interviews are audio-recorded with participants' consent and later transcribed verbatim. Field
notes are also used to document observations and contextual factors during the problem-
solving session.

Data Analysis

Data analysis follows a thematic coding process guided by established qualitative analysis
techniques. Transcripts, written solutions, and observational notes are reviewed repeatedly to
identify recurring themes related to students’ algebraic reasoning, conceptual understanding,
and problem-solving strategies. Coding categories are developed inductively while also in-
formed by theoretical frameworks on algebraic reasoning and expression transformation. The
analysis seeks to map the reasoning patterns exhibited by students, identify misconceptions,
and interpret how these elements influence performance in nonroutine tasks.

Trustworthiness of the Study

To ensure credibility, triangulation is applied by cross-referencing data from written so-
lutions, interview transcripts, and researcher observations. Member checking is conducted by
allowing participants to review and confirm the accuracy of interview interpretations. Trans-
ferability is addressed by providing detailed descriptions of the research context, participant
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characteristics, and data collection procedures. Dependability and confirmability are main-
tained through the use of an audit trail that documents analytical decisions and methodolog-
ical steps throughout the research process [10].

4. Results and Discussion

Emerging Patterns of Algebraic Reasoning

Emerging patterns of algebraic reasoning among university students reveal significant
variation in how they navigate symbolic forms, interpret mathematical structures, and generate
generalized conclusions. The analysis shows that students differ substantially in their ability to
recognize underlying algebraic relationships, which in turn influences the accuracy and coher-
ence of their solutions. Some students exhibit strong structural awareness, while others rely
heavily on surface-level procedures. These differences are not merely variations in skill but
reflect deeper cognitive distinctions in how mathematical meaning is constructed and applied.

A prominent pattern involves the ability of students to identify algebraic structures em-
bedded within expressions. Students with stronger reasoning consistently recognize forms
such as binomials, factorable expressions, or functional relationships before manipulating
symbols. They tend to analyze an expression holistically, determining how its components
relate, rather than immediately applying an algorithmic rule. This structural recognition allows
them to approach expansion or transformation tasks with intentionality, selecting strategies
aligned with the expression’s form.

Conversely, students who struggle with algebraic reasoning often fail to discern structural
features and instead approach expressions linearly, term by term. Their reasoning tends to
follow procedural scripts, such as “apply distributive property” or “simplify the terms,” with-
out first interpreting the global structure. As a result, they frequently misapply rules, especially
when expressions deviate slightly from familiar patterns. These difficulties highlight a discon-
nect between symbolic manipulation and conceptual interpretation.

Symbolic understanding also emerges as a clear differentiator among students. Those
exhibiting high symbolic fluency demonstrate an ability to interpret variables as generalizable
quantities rather than as placeholders for numbers. They view symbolic expressions as repre-
sentations of broader relationships and can justify transformations based on mathematical
principles. Their written solutions reflect deliberate choices, such as preserving equivalence or
maintaining structural integrity, which show sensitivity to the meaning of symbols.

In contrast, students with weaker symbolic reasoning often treat variables as static or
context-bound. Their errors frequently involve misinterpreting the role of variables, introduc-
ing inconsistencies, or altering structures unintentionally. Such patterns suggest that their sym-
bolic manipulations are not guided by conceptual reasoning but by fragmented procedural
memory. These students often express uncertainty during interviews when asked to justify
transformations, revealing that the meaning behind steps is not fully internalized.

Generalization abilities further distinguish students’ levels of algebraic reasoning. Strong
reasoners consistently identify recurring patterns, such as recognizing distributive structures
or anticipating the outcome of an expansion based on prior experience. They are capable of
extending reasoning beyond the immediate problem, articulating general principles that apply
across different tasks. These students often verbalize reasoning such as “any binomial multi-
plied by another binomial will produce four terms initially, which can then be combined de-
pending on like terms.”

Students with limited generalization capacity tend to view each expression as an isolated
entity. They require explicit prompts or familiar numerical examples to extend reasoning to
broader cases. During interviews, they often struggle to articulate how strategies used in one
problem might apply to another. Their reasoning remains localized, which restricts their ability
to adapt to nonroutine tasks that demand flexible thinking.

Variation in depth of reasoning also appears in how students justify their transformations.
Strong reasoners provide clear, logical explanations supported by algebraic principles. They
show awareness of the implications of each symbolic manipulation and can reflect on potential
alternative strategies. Their justifications demonstrate metacognitive engagement, indicating
that they monitor and evaluate their own reasoning processes during problem solving.

In comparison, students exhibiting weaker reasoning rarely provide justifications beyond
procedural statements. Their explanations tend to describe what they did (“I multiplied these
terms”) rather than why they did it. This lack of justification reveals limited conceptual
grounding and suggests that their reasoning is primarily operational. When errors occur, they
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often cannot identify the soutrce because they lack a framework for evaluating correctness
beyond surface-level procedures.

These divergent patterns collectively illustrate the broad spectrum of algebraic reasoning
present among students. The findings emphasize that algebraic proficiency is not merely the
ability to manipulate symbols but the capacity to understand, interpret, and generalize mathe-
matical structures. Recognizing these variations is crucial for designing instructional ap-
proaches that promote deeper reasoning and move students beyond procedural dependence.

To summarize emerging patterns, the following table highlights the contrast between
strong and weak algebraic reasoning observed in the study:

Table 1. Comparison of Strong and Weak Algebraic Reasoning Patterns

. . . . . Weak Algebraic Reason-
Reasoning Dimension Strong Algebraic Reasoning g ing
Recognizes global structure before Focuses on term-by-term
Structural Awareness . .
manipulation procedures
. . Treats variables as generalized quan- ~ Treats variables as static or
Symbolic Interpretation . .
tities numetric
L . . Views each problem in iso-
Generalization Identifies patterns, extends reasoning lation p
e Explains transformations conceptu-  Describes steps without ra-
Justification .
ally tionale
- Adapts strategies to expression struc- .
Flexibility fur P g p Relies on fixed procedures
ure

Conceptual Understanding versus Procedural Dependence

Conceptual understanding and procedural dependence represent two contrasting orien-
tations that shape how students engage with algebraic expressions, particularly in tasks requir-
ing expansion and transformation. The findings reveal that students vary widely in the balance
they maintain between these orientations, with some demonstrating robust conceptual
grounding while others rely heavily on memorized procedures. This distinction significantly
influences the quality, accuracy, and flexibility of their mathematical reasoning.

Students who exhibit strong conceptual understanding approach algebraic expressions
by first interpreting their structure and meaning. They demonstrate awareness of the relation-
ships among terms, the implications of operations, and the purpose behind each step of ma-
nipulation. When expanding or transforming expressions, these students articulate why a par-
ticular rule applies and how it preserves mathematical equivalence. Their responses display
coherence, with transformations connected logically to the underlying concepts guiding them.
Such students also show the ability to predict the outcome of symbolic manipulations, re-
flecting a deeper internalization of algebraic principles.

In contrast, students dependent on procedural knowledge often approach tasks as se-
quences of steps to be executed rather than concepts to be understood. Their reasoning relies
on recalling formulas or rules without fully grasping the conditions under which those rules
apply. When encountering familiar expressions, they can produce correct answers; however,
deviations from routines — such as nonstandard forms or embedded structures — quickly
lead to confusion. Their written work often reveals mechanical application of distributive or
simplification rules, sometimes resulting in transformations that break structural relationships
or distort equivalence.

The limitations of procedural dependence become evident in the types of errors students
frequently commit. A common error involves misapplication of the distributive property,
such as distributing incorrectly across terms or failing to multiply every component. Students
also demonstrate difficulties with variable interpretation, often treating variables inconsist-
ently or applying numerical intuition where symbolic reasoning is required. These errors high-
light a core issue: procedures performed without understanding can generate correct results
only in narrow, predictable contexts but fail under more complex or unfamiliar conditions.

Conversely, students with stronger conceptual foundations exhibit fewer structural er-
rors and demonstrate greater ability to self-correct. Their mistakes are often minor slips rather
than misconceptions, and they can articulate the source of their errors during reflection. These
students recognize when symbolic coherence is disrupted and adjust their reasoning accord-
ingly. Their work reflects a dynamic interplay between conceptual insight and procedural ex-
ecution, where procedures serve as tools rather than the basis of reasoning itself.

Another notable distinction is the students’ flexibility in adapting their strategies. Con-
ceptually oriented students shift between symbolic, structural, and verbal representations as
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needed. They can reframe expressions to reveal hidden patterns or simplify complex forms
by drawing on conceptual connections. Those reliant on procedures tend to persist with a
single strategy even when it becomes ineffective, indicating limited adaptability. Interviews
show that procedural students often express frustration when a familiar algorithm does not
yield progress, further illustrating their dependence on routine.

The contrast between conceptual and procedural approaches also appears in students’
justifications. Conceptually grounded students provide explanations that reference properties,
relationships, and the logic behind each step. Their reasoning is often relational, connecting
one operation to another through an understanding of its purpose. Procedural explanations,
however, center on describing actions taken rather than reasoning behind them. Statements
such as “because that is the rule” or “I always multiply like this” reflect a lack of conceptual
grounding and limited capacity for mathematical justification.

These patterns collectively reveal that procedural knowledge alone is insufficient for
dealing with nonroutine algebraic tasks. Without conceptual understanding, students struggle
to navigate expressions that require interpretation beyond sutface-level manipulation. On the
other hand, conceptual understanding enhances procedural fluency by providing a framework
within which procedures gain meaning and direction. The findings therefore underscore the
necessity of instructional approaches that integrate both forms of knowledge, while prioritiz-
ing conceptual depth to support transfer and adaptability.

To illustrate these contrasting orientations clearly, the following table summarizes the
key differences observed between students dominated by conceptual understanding and those
heavily dependent on procedures:

Table 2. Differences Between Conceptual Understanding and Procedural Dependence in

Algebraic Reasoning
Dimension Conceptual Understanding Procedural Dependence
. Interprets structure before ma-  Applies rules immediately without
Approach to Expressions Jerpr PP . Y
nipulation interpretation
Guided by understanding of Based on memorized steps or for-
Use of Procedures
concepts mulas
Fewer structural errors; self- Misapplied rules; inconsistent vati-
Error Patterns
corrects able use
- Adapts strategies to expression . .. .
Flexibility P & P Relies on rigid, familiar procedures
structure
. . . . . Describes only what steps were
Justification Explains why each step is valid y P

taken

Strategies Used in Expanding and Transforming Expressions
The Multiple

Students’ strategies for expanding and transforming algebraic expressions reveal a wide
spectrum of reasoning approaches, ranging from highly structured manipulation to ad-hoc
procedures that rely on isolated rules. As the data demonstrate, many students approach al-
gebraic transformation with the intention of applying familiar techniques, yet their level of
strategic control over these techniques varies considerably. Understanding these strategies
provides critical insight into how students navigate symbolic complexity and how deeply they
grasp the underlying algebraic structures.

One common strategy observed is rule-based expansion, where students apply distribu-
tive, assoclative, and commutative properties directly and systematically. This approach is of-
ten effective when students possess automaticity in procedural manipulation and can recall
algebraic identities with ease. However, its success depends on whether students understand
when specific rules are appropriate and how they connect to the structural features of the
expression being manipulated. Those who rely solely on memorized steps tend to apply these
rules rigidly, even when the expression requires a different or more flexible approach.

In contrast, some students demonstrate structure-driven strategies, focusing on identi-
fying patterns within expressions before performing any manipulation. These students ana-
lyze the form of the expression—such as recognizing a binomial pattern, factoring schema,
or opportunities to apply exponent rules—before committing to symbolic transformation.
This strategy tends to result in more efficient solutions, especially in tasks involving nested
structures or nonroutine manipulations. It also reflects a deeper conceptual understanding, as
students purposefully seek structures that support meaningful transformations.

Another observed strategy involves recursive decomposition, where students break
down complex expressions into smaller, more manageable subexpressions. Through stepwise
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simplification, they reconstruct the expression using known identities or previously solved
components. This strategy is beneficial for handling multi-layered algebraic statements, such
as those involving composition of functions or expressions with multiple variables. Students
using this approach tend to maintain consistency in symbolic representation, reducing errors
that arise from treating the expression as a single, unwieldy unit.

However, not all strategies employed by students are equally effective. Some students
adopt a trial-and-error approach, performing transformations without a clear sense of direc-
tion or justification. This approach leads to inconsistencies, especially when students experi-
ment with operations that are not structurally justified. As a result, errors such as incorrect
distribution, inconsistent handling of negative signs, or unwarranted assumptions about
equivalence frequently appeat. These errors highlight the need for instructional emphasis on
strategic planning rather than mechanical execution.

A notable pattern is that students who struggle often overlook the relational meaning of
symbols and focus instead on superficial features of the expression. For example, encountet-
ing parentheses often prompts immediate distribution, even in cases where factoring or sub-
stitution would be a more appropriate strategy. This behavior indicates a default procedural
habit, suggesting that students may not yet view algebraic expressions as objects that can be
manipulated flexibly according to their structural properties.

On the other hand, students who engage in relational reasoning demonstrate an ability
to view expressions holistically. They consider equivalence not only in terms of visual simi-
larity but as a logical relationship grounded in algebraic principles. These students recognize
that transformation is not merely about rewriting expressions but about preserving inherent
structure while altering form. Their strategies include substitution of subexpressions, reor-
ganization of terms to reveal latent patterns, and intentional selection of transformation path-
ways that reduce complexity.

The data also reveal a subset of students who effectively combine procedural fluency
with conceptual insight. These students switch flexibly between symbolic manipulation, struc-
tural recognition, and strategic simplification depending on the task demands. Their versatility
allows them to choose methods that reduce cognitive load while maintaining accuracy, such
as converting complicated radicals to exponent forms before expansion or using factoring to
reverse incorrect expansion pathways.

To illustrate the variation in strategy use, the following table summarizes the dominant
strategies identified in relation to performance indicators observed during the study.

Table 3. Dominant Strategies in Algebraic Expansion and Transformation
Associated Per-

Strategy Type

Description

Typical Indicators

formance Level

Rule-based manipu-

Applying distributive, associa-

Correct but rigid transfor-

lati tive, and commutative rules di- mations; errors when structure ~ Moderate
ation . .
rectly is unfamiliar
. e . Efficient transformations;
Structure-driven Identifying underlying patterns . - . .
. ce . recognition of algebraic identi- ~ High
analysis before manipulation fies
Recursive decompo- Breaking expressions into Stepwise organization; fewer Hioh
sition smaller subexpressions symbolic errors &
Trial-and-error ma- Unsystematic symbolic opera- Inconsistencies; unjustified I
. . . . LOW
nipulation tions transformations
. . Viewing expressions holistically Flexible strategy switching; ac- .
Relational reasoning 8 exp Y & & High

and structurally

curate simplification

Opverall, the variety of strategies used by students showcases not only their procedural
abilities but also the depth of their conceptual reasoning. Effective strategies tend to reflect a
strong awareness of algebraic structures, whereas ineffective ones often arise from procedural
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dependence and lack of symbolic control. These findings underscore the importance of pro-
moting strategic flexibility in instruction, enabling students to see algebraic expressions not
merely as symbols to be manipulated but as structured entities that invite thoughtful and
purposeful transformation.

Student Approaches to Nonroutine Problem-Solving

Students’ approaches to nonroutine problem-solving reveal a broad range of cognitive
strategies that reflect their readiness to engage with unfamiliar mathematical tasks. Unlike
routine exercises that rely on memorized procedures, nonroutine problems require students
to interpret the structure of the task, explore potential pathways, and make strategic decisions.
The data show that students who performed well on these tasks typically exhibited a willing-
ness to analyze the problem deeply before attempting symbolic manipulation, demonstrating
cognitive flexibility that aligns with higher-order thinking.

A prominent approach among successful students is exploratory reasoning, where they
begin by examining the problem from multiple angles to identify underlying patterns and
relationships. These students frequently sketch diagrams, reframe the problem in their own
wortds, or test small cases to gain insight into its structure. This exploratory phase allows them
to form preliminary conjectures that guide their next steps, resulting in solutions that are both
coherent and justified.

Another effective approach involves strategic decomposition, where students break
down a complex nonroutine task into manageable subproblems. By isolating components of
the task, they reduce cognitive load and focus on solving smaller pieces that eventually con-
tribute to the overall solution. Students who apply this strategy tend to produce solution path-
ways that are logically sequenced, demonstrating clear connections between substeps. This
method reflects the type of metacognitive planning essential for complex problem-solving.

Some students employ analogical reasoning, attempting to map features of the unfamiliar
problem onto problems they have previously encountered. When executed successfully, this
approach enables students to repurpose known strategies in novel contexts, producing effi-
cient solutions. However, this approach is only beneficial when students correctly identify
relevant similarities; misapplied analogies often lead to incomplete or incorrect solutions, il-
lustrating the fine balance required in transferring prior knowledge.

Students who struggle with nonroutine tasks often rely on trial-and-error techniques,
characterized by unsystematic attempts to manipulate expressions or test arbitrary values.
This approach lacks strategic grounding and typically produces fragmented, incoherent solu-
tions. The absence of structural understanding becomes apparent in these cases, as students
fail to identify which operations are meaningful and which are merely mechanical.

A notable challenge for some students is cognitive rigidity, or the tendency to cling to
familiar procedures even when these procedures are inappropriate for the task. These students
may attempt to apply routine algebraic techniques, such as standard expansions or substitu-
tions, even when the problem demands pattern recognition, reasoning with generality, or non-
algorithmic thinking. This rigidity prevents them from adapting their approach to the unique
demands of the problem.

Conversely, students showing higher-order reasoning demonstrate strong metacognitive
awareness. They monitor their solution processes, reflect on errors, and adjust their strategies
when encountering obstacles. This reflective regulation allows them to pivot between strate-
gies, abandon ineffective paths, and refine their reasoning based on emerging insights. Their
solutions are not only correct but also demonstrate a coherent, reflective problem-solving
narrative.

The influence of strategy variation on solution quality is evident in the results. Students
who employed analytical and flexible strategies tended to produce complete solutions, artic-
ulate justifications, and maintain symbolic accuracy. Those who relied on procedural habits
or unstructured exploration often produced partial or incorrect answers, marked by gaps in
logical reasoning or misuse of algebraic symbols. The relationship between strategy choice
and performance highlights the critical role of adaptivity in mathematical problem-solving.

To illustrate the diversity of approaches, the following table summarizes the main pat-
terns of student strategies observed in nonroutine problem-solving tasks.

Table 4. Patterns of Student Approaches to Nonroutine Problem-Solving

Common Weak-
nesses

Approach Type Key Characteristics Strengths
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Quality and Coherence of Mathematical Explanation

The quality and coherence of students’ mathematical explanations provide critical in-
sights into their algebraic reasoning processes, particularly when solving tasks involving ex-
pression expansion, transformation, and nonroutine problem-solving. The data indicate sig-
nificant variation in the clarity, structure, and logical justification presented by students. High-
performing students generally offer explanations that demonstrate not only procedural cor-
rectness but also a deep understanding of the underlying mathematical principles guiding each
step. Their reasoning reveals a capacity to articulate connections between symbolic manipu-
lations and conceptual frameworks, forming explanations that are both logically sound and
pedagogically meaningful.

One prominent characteristic of coherent explanations is the presence of clear step-by-
step articulation. Students who excel in this aspect are able to present their reasoning in a
logically ordered sequence, ensuring that each transformation or operation is justified explic-
itly. They explain why a particular distributive property, factoring rule, or symbolic manipu-
lation is applied, highlighting their awareness of algebraic structure. This form of articulation
reflects strong metacognitive skills and demonstrates the ability to communicate mathemati-
cal ideas effectively.

Another important feature of high-quality explanations is the use of accurate mathemat-
ical language. These students consistently employ appropriate terminology—such as “coeffi-
cient,” “variable,” “equivalent expression,” “structural pattern,” or “generalization”—to de-
scribe their reasoning. Their precise use of language enhances clarity and shows mastery of
disciplinary discourse. Students who use mathematical language correctly tend to produce
explanations that align well with theoretical expectations of algebraic reasoning.

In contrast, students with weaker explanations often rely on vague or informal descrip-
tions that obscure the logic behind their steps. Their explanations may include statements
such as “I just moved it,” “I changed it,” or “I know the formula,” which do not reveal the
conceptual basis of their decisions. This lack of specificity suggests a reliance on memorized
procedures rather than structural understanding. As a result, their explanations fail to com-
municate the reasoning needed to justify their solutions, reducing the overall coherence.

Logical justification also plays a central role in assessing explanation quality. Students
with strong reasoning support each transformation with valid mathematical arguments, ref-
erencing properties such as commutativity, associativity, or distributivity when appropriate.
They demonstrate an understanding that algebraic manipulation is not arbitrary but governed
by rules that preserve equivalence. Conversely, errors in justification often stem from mis-
conceptions, such as misinterpreting variable roles or overgeneralizing rules. These mistakes
reveal underlying cognitive gaps that hinder the development of deeper reasoning.

The ability to use representations appropriately further distinguishes high- from low-
quality explanations. Students with strong conceptual understanding incorporate tables, sym-
bolic breakdowns, or diagrams to support their reasoning when necessary. These representa-
tions serve as tools for clarifying or reinforcing their arguments. Meanwhile, students who
struggle tend to avoid auxiliary representations altogether or use them incorrectly, leading to
fragmented and sometimes contradictory explanations.

Coherence is also influenced by students’ ability to connect intermediate steps to the
overall goal of the problem. Strong students consistently relate their manipulations back to
the objective—such as simplifying an expression, identifying structure, or solving an un-
known. This global awareness ensures that their explanations form a unified natrative rather
than a collection of disconnected steps. Weak explanations, by contrast, often display a lack
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of direction, with students performing symbolic operations without articulating how those
steps contribute to the final solution.

The data also reveal differences in how students handle errors within their explanations.
Students with mature reasoning acknowledge mistakes, revise their steps, and incorporate the
correction into their explanation. This reflective behavior strengthens the coherence of their
reasoning. Students with weaker reasoning either fail to recognize inconsistencies or leave
contradictions unresolved, producing explanations that lack internal logic.

To synthesize the findings, the table below summarizes the primary dimensions that
distinguish high-quality from low-quality mathematical explanations among participants.

Table 5. Key Dimensions of Quality and Coherence in Students’ Mathematical Explanations
Characteristics of High-Quality Ex- Characteristics of Low-Quality

Dimension . .
planations Explanations

. I Disorganized steps; missing justifica-

Logical structure Clear sequence; each step justified fion & ps; &
. . . Vague wording; incorrect or informal
Mathematical language Precise terminology; correct usage terms
Conceptual justification Reasoning tied to algebraic properties Reliance on memorized procedures
. Appropriate, supportive diagrams or Little or no representation; incorrect
Representation use PPropriate, supp & p ’
tables use

Global coherence Steps aligned with overall goal Disconnected steps; unclear purpose

Opverall, the quality and coherence of students’ mathematical explanations provide a
meaningful indicator of their algebraic reasoning abilities. Students who combine structural
awareness, precise language, and clear justification demonstrate reasoning aligned with estab-
lished theories of advanced algebraic thinking. These findings highlight the importance of
instructional practices that emphasize explanation, justification, and mathematical communi-
cation, ensuring that students not only perform procedures but also understand and articulate
the reasoning that legitimizes those procedures.

6. Conclusions

The conclusions of this study highlight the complexity and diversity of students’ alge-
braic reasoning processes when engaging with tasks involving expression expansion, symbolic
transformation, and nonroutine problem-solving. The findings demonstrate that students
with strong conceptual understanding exhibit flexible, strategic, and reflective reasoning that
enables them to navigate unfamiliar mathematical challenges effectively. Their problem-solv-
ing approaches are characterized by coherent explanations, precise mathematical language,
and the ability to justify each transformation based on undetlying algebraic principles. This
group consistently shows the capacity to generalize patterns, interpret symbolic relationships,
and maintain structural awareness—key indicators of advanced algebraic reasoning.

In contrast, students who rely heavily on procedural memorization encounter persistent
difficulties when required to apply reasoning beyond routine tasks. Their explanations often
lack clarity, coherence, and justification, indicating gaps in conceptual understanding. Mis-
conceptions and errors commonly arise from overgeneralized rules, limited structural recog-
nition, and inconsistent symbolic manipulation. These patterns highlight the importance of
fostering deep conceptual understanding rather than focusing solely on procedural fluency in
mathematics instruction at the university level.

Overall, the study underscores the need for instructional approaches that prioritize rea-
soning, explanation, and structural understanding in algebra. Effective teaching practices
should encourage students to explore multiple solution strategies, articulate their reasoning
explicitly, and engage with mathematical tasks that promote generalization and flexible think-
ing. By integrating these elements into learning environments, educators can better support
students in developing the level of algebraic reasoning necessary for advanced mathematical
study and for solving complex, nonroutine problems.
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